3.220 \(\int \frac{\sin ^4(c+d x)}{(a-b \sin ^4(c+d x))^2} \, dx\)

Optimal. Leaf size=195 \[ \frac{\tan ^{-1}\left (\frac{\sqrt{\sqrt{a}-\sqrt{b}} \tan (c+d x)}{\sqrt [4]{a}}\right )}{8 a^{3/4} \sqrt{b} d \left (\sqrt{a}-\sqrt{b}\right )^{3/2}}-\frac{\tan ^{-1}\left (\frac{\sqrt{\sqrt{a}+\sqrt{b}} \tan (c+d x)}{\sqrt [4]{a}}\right )}{8 a^{3/4} \sqrt{b} d \left (\sqrt{a}+\sqrt{b}\right )^{3/2}}+\frac{\tan ^5(c+d x)}{4 a d \left ((a-b) \tan ^4(c+d x)+2 a \tan ^2(c+d x)+a\right )}-\frac{\tan (c+d x)}{4 a d (a-b)} \]

[Out]

ArcTan[(Sqrt[Sqrt[a] - Sqrt[b]]*Tan[c + d*x])/a^(1/4)]/(8*a^(3/4)*(Sqrt[a] - Sqrt[b])^(3/2)*Sqrt[b]*d) - ArcTa
n[(Sqrt[Sqrt[a] + Sqrt[b]]*Tan[c + d*x])/a^(1/4)]/(8*a^(3/4)*(Sqrt[a] + Sqrt[b])^(3/2)*Sqrt[b]*d) - Tan[c + d*
x]/(4*a*(a - b)*d) + Tan[c + d*x]^5/(4*a*d*(a + 2*a*Tan[c + d*x]^2 + (a - b)*Tan[c + d*x]^4))

________________________________________________________________________________________

Rubi [A]  time = 0.229434, antiderivative size = 195, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {3217, 1275, 12, 1122, 1166, 205} \[ \frac{\tan ^{-1}\left (\frac{\sqrt{\sqrt{a}-\sqrt{b}} \tan (c+d x)}{\sqrt [4]{a}}\right )}{8 a^{3/4} \sqrt{b} d \left (\sqrt{a}-\sqrt{b}\right )^{3/2}}-\frac{\tan ^{-1}\left (\frac{\sqrt{\sqrt{a}+\sqrt{b}} \tan (c+d x)}{\sqrt [4]{a}}\right )}{8 a^{3/4} \sqrt{b} d \left (\sqrt{a}+\sqrt{b}\right )^{3/2}}+\frac{\tan ^5(c+d x)}{4 a d \left ((a-b) \tan ^4(c+d x)+2 a \tan ^2(c+d x)+a\right )}-\frac{\tan (c+d x)}{4 a d (a-b)} \]

Antiderivative was successfully verified.

[In]

Int[Sin[c + d*x]^4/(a - b*Sin[c + d*x]^4)^2,x]

[Out]

ArcTan[(Sqrt[Sqrt[a] - Sqrt[b]]*Tan[c + d*x])/a^(1/4)]/(8*a^(3/4)*(Sqrt[a] - Sqrt[b])^(3/2)*Sqrt[b]*d) - ArcTa
n[(Sqrt[Sqrt[a] + Sqrt[b]]*Tan[c + d*x])/a^(1/4)]/(8*a^(3/4)*(Sqrt[a] + Sqrt[b])^(3/2)*Sqrt[b]*d) - Tan[c + d*
x]/(4*a*(a - b)*d) + Tan[c + d*x]^5/(4*a*d*(a + 2*a*Tan[c + d*x]^2 + (a - b)*Tan[c + d*x]^4))

Rule 3217

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[(x^m*(a + 2*a*ff^2*x^2 + (a + b)*ff^4*x^4)^p)/(1 + ff^2
*x^2)^(m/2 + 2*p + 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p]

Rule 1275

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[(f*
(f*x)^(m - 1)*(a + b*x^2 + c*x^4)^(p + 1)*(b*d - 2*a*e - (b*e - 2*c*d)*x^2))/(2*(p + 1)*(b^2 - 4*a*c)), x] - D
ist[f^2/(2*(p + 1)*(b^2 - 4*a*c)), Int[(f*x)^(m - 2)*(a + b*x^2 + c*x^4)^(p + 1)*Simp[(m - 1)*(b*d - 2*a*e) -
(4*p + 4 + m + 1)*(b*e - 2*c*d)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[
p, -1] && GtQ[m, 1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1122

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d^3*(d*x)^(m - 3)*(a + b*
x^2 + c*x^4)^(p + 1))/(c*(m + 4*p + 1)), x] - Dist[d^4/(c*(m + 4*p + 1)), Int[(d*x)^(m - 4)*Simp[a*(m - 3) + b
*(m + 2*p - 1)*x^2, x]*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && Gt
Q[m, 3] && NeQ[m + 4*p + 1, 0] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sin ^4(c+d x)}{\left (a-b \sin ^4(c+d x)\right )^2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^4 \left (1+x^2\right )}{\left (a+2 a x^2+(a-b) x^4\right )^2} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac{\tan ^5(c+d x)}{4 a d \left (a+2 a \tan ^2(c+d x)+(a-b) \tan ^4(c+d x)\right )}+\frac{\operatorname{Subst}\left (\int -\frac{2 b x^4}{a+2 a x^2+(a-b) x^4} \, dx,x,\tan (c+d x)\right )}{8 a b d}\\ &=\frac{\tan ^5(c+d x)}{4 a d \left (a+2 a \tan ^2(c+d x)+(a-b) \tan ^4(c+d x)\right )}-\frac{\operatorname{Subst}\left (\int \frac{x^4}{a+2 a x^2+(a-b) x^4} \, dx,x,\tan (c+d x)\right )}{4 a d}\\ &=-\frac{\tan (c+d x)}{4 a (a-b) d}+\frac{\tan ^5(c+d x)}{4 a d \left (a+2 a \tan ^2(c+d x)+(a-b) \tan ^4(c+d x)\right )}+\frac{\operatorname{Subst}\left (\int \frac{a+2 a x^2}{a+2 a x^2+(a-b) x^4} \, dx,x,\tan (c+d x)\right )}{4 a (a-b) d}\\ &=-\frac{\tan (c+d x)}{4 a (a-b) d}+\frac{\tan ^5(c+d x)}{4 a d \left (a+2 a \tan ^2(c+d x)+(a-b) \tan ^4(c+d x)\right )}+\frac{\left (2 \sqrt{a}-\frac{a+b}{\sqrt{b}}\right ) \operatorname{Subst}\left (\int \frac{1}{a-\sqrt{a} \sqrt{b}+(a-b) x^2} \, dx,x,\tan (c+d x)\right )}{8 \sqrt{a} (a-b) d}+\frac{\left (2 \sqrt{a}+\frac{a+b}{\sqrt{b}}\right ) \operatorname{Subst}\left (\int \frac{1}{a+\sqrt{a} \sqrt{b}+(a-b) x^2} \, dx,x,\tan (c+d x)\right )}{8 \sqrt{a} (a-b) d}\\ &=\frac{\tan ^{-1}\left (\frac{\sqrt{\sqrt{a}-\sqrt{b}} \tan (c+d x)}{\sqrt [4]{a}}\right )}{8 a^{3/4} \left (\sqrt{a}-\sqrt{b}\right )^{3/2} \sqrt{b} d}-\frac{\tan ^{-1}\left (\frac{\sqrt{\sqrt{a}+\sqrt{b}} \tan (c+d x)}{\sqrt [4]{a}}\right )}{8 a^{3/4} \left (\sqrt{a}+\sqrt{b}\right )^{3/2} \sqrt{b} d}-\frac{\tan (c+d x)}{4 a (a-b) d}+\frac{\tan ^5(c+d x)}{4 a d \left (a+2 a \tan ^2(c+d x)+(a-b) \tan ^4(c+d x)\right )}\\ \end{align*}

Mathematica [A]  time = 4.23528, size = 225, normalized size = 1.15 \[ -\frac{\frac{\left (\sqrt{a}-\sqrt{b}\right ) \tan ^{-1}\left (\frac{\left (\sqrt{a}+\sqrt{b}\right ) \tan (c+d x)}{\sqrt{\sqrt{a} \sqrt{b}+a}}\right )}{\sqrt{a} \sqrt{b} \sqrt{\sqrt{a} \sqrt{b}+a}}-\frac{2 (\sin (4 (c+d x))-6 \sin (2 (c+d x)))}{8 a+4 b \cos (2 (c+d x))-b \cos (4 (c+d x))-3 b}+\frac{\left (\sqrt{a}+\sqrt{b}\right ) \tanh ^{-1}\left (\frac{\left (\sqrt{a}-\sqrt{b}\right ) \tan (c+d x)}{\sqrt{\sqrt{a} \sqrt{b}-a}}\right )}{\sqrt{a} \sqrt{b} \sqrt{\sqrt{a} \sqrt{b}-a}}}{8 d (a-b)} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[c + d*x]^4/(a - b*Sin[c + d*x]^4)^2,x]

[Out]

-(((Sqrt[a] - Sqrt[b])*ArcTan[((Sqrt[a] + Sqrt[b])*Tan[c + d*x])/Sqrt[a + Sqrt[a]*Sqrt[b]]])/(Sqrt[a]*Sqrt[a +
 Sqrt[a]*Sqrt[b]]*Sqrt[b]) + ((Sqrt[a] + Sqrt[b])*ArcTanh[((Sqrt[a] - Sqrt[b])*Tan[c + d*x])/Sqrt[-a + Sqrt[a]
*Sqrt[b]]])/(Sqrt[a]*Sqrt[-a + Sqrt[a]*Sqrt[b]]*Sqrt[b]) - (2*(-6*Sin[2*(c + d*x)] + Sin[4*(c + d*x)]))/(8*a -
 3*b + 4*b*Cos[2*(c + d*x)] - b*Cos[4*(c + d*x)]))/(8*(a - b)*d)

________________________________________________________________________________________

Maple [B]  time = 0.108, size = 478, normalized size = 2.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(d*x+c)^4/(a-b*sin(d*x+c)^4)^2,x)

[Out]

-1/2/d/(tan(d*x+c)^4*a-tan(d*x+c)^4*b+2*a*tan(d*x+c)^2+a)/(a-b)*tan(d*x+c)^3-1/4/d/(tan(d*x+c)^4*a-tan(d*x+c)^
4*b+2*a*tan(d*x+c)^2+a)/(a-b)*tan(d*x+c)+1/8/d*a/(a*b)^(1/2)/(a-b)/(((a*b)^(1/2)+a)*(a-b))^(1/2)*arctan((a-b)*
tan(d*x+c)/(((a*b)^(1/2)+a)*(a-b))^(1/2))+1/8/d/(a*b)^(1/2)/(a-b)/(((a*b)^(1/2)+a)*(a-b))^(1/2)*arctan((a-b)*t
an(d*x+c)/(((a*b)^(1/2)+a)*(a-b))^(1/2))*b+1/4/d/(a-b)/(((a*b)^(1/2)+a)*(a-b))^(1/2)*arctan((a-b)*tan(d*x+c)/(
((a*b)^(1/2)+a)*(a-b))^(1/2))-1/8/d*a/(a*b)^(1/2)/(a-b)/(((a*b)^(1/2)-a)*(a-b))^(1/2)*arctanh((-a+b)*tan(d*x+c
)/(((a*b)^(1/2)-a)*(a-b))^(1/2))-1/8/d/(a*b)^(1/2)/(a-b)/(((a*b)^(1/2)-a)*(a-b))^(1/2)*arctanh((-a+b)*tan(d*x+
c)/(((a*b)^(1/2)-a)*(a-b))^(1/2))*b+1/4/d/(a-b)/(((a*b)^(1/2)-a)*(a-b))^(1/2)*arctanh((-a+b)*tan(d*x+c)/(((a*b
)^(1/2)-a)*(a-b))^(1/2))

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^4/(a-b*sin(d*x+c)^4)^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 5.51345, size = 5956, normalized size = 30.54 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^4/(a-b*sin(d*x+c)^4)^2,x, algorithm="fricas")

[Out]

-1/32*(((a*b - b^2)*d*cos(d*x + c)^4 - 2*(a*b - b^2)*d*cos(d*x + c)^2 - (a^2 - 2*a*b + b^2)*d)*sqrt(-((a^4*b -
 3*a^3*b^2 + 3*a^2*b^3 - a*b^4)*d^2*sqrt((9*a^2 + 6*a*b + b^2)/((a^9*b - 6*a^8*b^2 + 15*a^7*b^3 - 20*a^6*b^4 +
 15*a^5*b^5 - 6*a^4*b^6 + a^3*b^7)*d^4)) + a + 3*b)/((a^4*b - 3*a^3*b^2 + 3*a^2*b^3 - a*b^4)*d^2))*log(1/4*(3*
a + b)*cos(d*x + c)^2 + 1/2*(2*(a^6*b - 3*a^5*b^2 + 3*a^4*b^3 - a^3*b^4)*d^3*sqrt((9*a^2 + 6*a*b + b^2)/((a^9*
b - 6*a^8*b^2 + 15*a^7*b^3 - 20*a^6*b^4 + 15*a^5*b^5 - 6*a^4*b^6 + a^3*b^7)*d^4))*cos(d*x + c)*sin(d*x + c) -
(3*a^3 + 4*a^2*b + a*b^2)*d*cos(d*x + c)*sin(d*x + c))*sqrt(-((a^4*b - 3*a^3*b^2 + 3*a^2*b^3 - a*b^4)*d^2*sqrt
((9*a^2 + 6*a*b + b^2)/((a^9*b - 6*a^8*b^2 + 15*a^7*b^3 - 20*a^6*b^4 + 15*a^5*b^5 - 6*a^4*b^6 + a^3*b^7)*d^4))
 + a + 3*b)/((a^4*b - 3*a^3*b^2 + 3*a^2*b^3 - a*b^4)*d^2)) - 1/4*(2*(a^5 - 3*a^4*b + 3*a^3*b^2 - a^2*b^3)*d^2*
cos(d*x + c)^2 - (a^5 - 3*a^4*b + 3*a^3*b^2 - a^2*b^3)*d^2)*sqrt((9*a^2 + 6*a*b + b^2)/((a^9*b - 6*a^8*b^2 + 1
5*a^7*b^3 - 20*a^6*b^4 + 15*a^5*b^5 - 6*a^4*b^6 + a^3*b^7)*d^4)) - 3/4*a - 1/4*b) - ((a*b - b^2)*d*cos(d*x + c
)^4 - 2*(a*b - b^2)*d*cos(d*x + c)^2 - (a^2 - 2*a*b + b^2)*d)*sqrt(-((a^4*b - 3*a^3*b^2 + 3*a^2*b^3 - a*b^4)*d
^2*sqrt((9*a^2 + 6*a*b + b^2)/((a^9*b - 6*a^8*b^2 + 15*a^7*b^3 - 20*a^6*b^4 + 15*a^5*b^5 - 6*a^4*b^6 + a^3*b^7
)*d^4)) + a + 3*b)/((a^4*b - 3*a^3*b^2 + 3*a^2*b^3 - a*b^4)*d^2))*log(1/4*(3*a + b)*cos(d*x + c)^2 - 1/2*(2*(a
^6*b - 3*a^5*b^2 + 3*a^4*b^3 - a^3*b^4)*d^3*sqrt((9*a^2 + 6*a*b + b^2)/((a^9*b - 6*a^8*b^2 + 15*a^7*b^3 - 20*a
^6*b^4 + 15*a^5*b^5 - 6*a^4*b^6 + a^3*b^7)*d^4))*cos(d*x + c)*sin(d*x + c) - (3*a^3 + 4*a^2*b + a*b^2)*d*cos(d
*x + c)*sin(d*x + c))*sqrt(-((a^4*b - 3*a^3*b^2 + 3*a^2*b^3 - a*b^4)*d^2*sqrt((9*a^2 + 6*a*b + b^2)/((a^9*b -
6*a^8*b^2 + 15*a^7*b^3 - 20*a^6*b^4 + 15*a^5*b^5 - 6*a^4*b^6 + a^3*b^7)*d^4)) + a + 3*b)/((a^4*b - 3*a^3*b^2 +
 3*a^2*b^3 - a*b^4)*d^2)) - 1/4*(2*(a^5 - 3*a^4*b + 3*a^3*b^2 - a^2*b^3)*d^2*cos(d*x + c)^2 - (a^5 - 3*a^4*b +
 3*a^3*b^2 - a^2*b^3)*d^2)*sqrt((9*a^2 + 6*a*b + b^2)/((a^9*b - 6*a^8*b^2 + 15*a^7*b^3 - 20*a^6*b^4 + 15*a^5*b
^5 - 6*a^4*b^6 + a^3*b^7)*d^4)) - 3/4*a - 1/4*b) + ((a*b - b^2)*d*cos(d*x + c)^4 - 2*(a*b - b^2)*d*cos(d*x + c
)^2 - (a^2 - 2*a*b + b^2)*d)*sqrt(((a^4*b - 3*a^3*b^2 + 3*a^2*b^3 - a*b^4)*d^2*sqrt((9*a^2 + 6*a*b + b^2)/((a^
9*b - 6*a^8*b^2 + 15*a^7*b^3 - 20*a^6*b^4 + 15*a^5*b^5 - 6*a^4*b^6 + a^3*b^7)*d^4)) - a - 3*b)/((a^4*b - 3*a^3
*b^2 + 3*a^2*b^3 - a*b^4)*d^2))*log(-1/4*(3*a + b)*cos(d*x + c)^2 + 1/2*(2*(a^6*b - 3*a^5*b^2 + 3*a^4*b^3 - a^
3*b^4)*d^3*sqrt((9*a^2 + 6*a*b + b^2)/((a^9*b - 6*a^8*b^2 + 15*a^7*b^3 - 20*a^6*b^4 + 15*a^5*b^5 - 6*a^4*b^6 +
 a^3*b^7)*d^4))*cos(d*x + c)*sin(d*x + c) + (3*a^3 + 4*a^2*b + a*b^2)*d*cos(d*x + c)*sin(d*x + c))*sqrt(((a^4*
b - 3*a^3*b^2 + 3*a^2*b^3 - a*b^4)*d^2*sqrt((9*a^2 + 6*a*b + b^2)/((a^9*b - 6*a^8*b^2 + 15*a^7*b^3 - 20*a^6*b^
4 + 15*a^5*b^5 - 6*a^4*b^6 + a^3*b^7)*d^4)) - a - 3*b)/((a^4*b - 3*a^3*b^2 + 3*a^2*b^3 - a*b^4)*d^2)) - 1/4*(2
*(a^5 - 3*a^4*b + 3*a^3*b^2 - a^2*b^3)*d^2*cos(d*x + c)^2 - (a^5 - 3*a^4*b + 3*a^3*b^2 - a^2*b^3)*d^2)*sqrt((9
*a^2 + 6*a*b + b^2)/((a^9*b - 6*a^8*b^2 + 15*a^7*b^3 - 20*a^6*b^4 + 15*a^5*b^5 - 6*a^4*b^6 + a^3*b^7)*d^4)) +
3/4*a + 1/4*b) - ((a*b - b^2)*d*cos(d*x + c)^4 - 2*(a*b - b^2)*d*cos(d*x + c)^2 - (a^2 - 2*a*b + b^2)*d)*sqrt(
((a^4*b - 3*a^3*b^2 + 3*a^2*b^3 - a*b^4)*d^2*sqrt((9*a^2 + 6*a*b + b^2)/((a^9*b - 6*a^8*b^2 + 15*a^7*b^3 - 20*
a^6*b^4 + 15*a^5*b^5 - 6*a^4*b^6 + a^3*b^7)*d^4)) - a - 3*b)/((a^4*b - 3*a^3*b^2 + 3*a^2*b^3 - a*b^4)*d^2))*lo
g(-1/4*(3*a + b)*cos(d*x + c)^2 - 1/2*(2*(a^6*b - 3*a^5*b^2 + 3*a^4*b^3 - a^3*b^4)*d^3*sqrt((9*a^2 + 6*a*b + b
^2)/((a^9*b - 6*a^8*b^2 + 15*a^7*b^3 - 20*a^6*b^4 + 15*a^5*b^5 - 6*a^4*b^6 + a^3*b^7)*d^4))*cos(d*x + c)*sin(d
*x + c) + (3*a^3 + 4*a^2*b + a*b^2)*d*cos(d*x + c)*sin(d*x + c))*sqrt(((a^4*b - 3*a^3*b^2 + 3*a^2*b^3 - a*b^4)
*d^2*sqrt((9*a^2 + 6*a*b + b^2)/((a^9*b - 6*a^8*b^2 + 15*a^7*b^3 - 20*a^6*b^4 + 15*a^5*b^5 - 6*a^4*b^6 + a^3*b
^7)*d^4)) - a - 3*b)/((a^4*b - 3*a^3*b^2 + 3*a^2*b^3 - a*b^4)*d^2)) - 1/4*(2*(a^5 - 3*a^4*b + 3*a^3*b^2 - a^2*
b^3)*d^2*cos(d*x + c)^2 - (a^5 - 3*a^4*b + 3*a^3*b^2 - a^2*b^3)*d^2)*sqrt((9*a^2 + 6*a*b + b^2)/((a^9*b - 6*a^
8*b^2 + 15*a^7*b^3 - 20*a^6*b^4 + 15*a^5*b^5 - 6*a^4*b^6 + a^3*b^7)*d^4)) + 3/4*a + 1/4*b) + 8*(cos(d*x + c)^3
 - 2*cos(d*x + c))*sin(d*x + c))/((a*b - b^2)*d*cos(d*x + c)^4 - 2*(a*b - b^2)*d*cos(d*x + c)^2 - (a^2 - 2*a*b
 + b^2)*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)**4/(a-b*sin(d*x+c)**4)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^4/(a-b*sin(d*x+c)^4)^2,x, algorithm="giac")

[Out]

Exception raised: NotImplementedError